Future of Nuclear Engineering

Harold McFarlane

Deputy Associate Laboratory Director for Nuclear Science and Technology

11 June 2010

Idaho Society of Professional Engineers Boise, Idaho

www.inl.gov

Idaho National Laboratory — Vision

The National Nuclear Laboratory with Multi-Program Capabilities

The nuclear energy mission is the reason INL exists

The Nuclear Future (and Past)

New nuclear plant applications in US

The Nuclear Renaissance is upon us...

- Increased public understanding & acceptance of nuclear energy's role
- License extensions
- Enabling new reactor construction
- Exploring advanced reactor concepts and fuel cycles
- Growing enrollments in nuclear science and engineering at universities

Nuclear Engineering degree trend

Hub-Node University Network

Regional focus to enable university access

Idaho National Laboratory

Special schools to prepare nuclear engineers of the future

July 20, 2010 - July 29, 2010

Special schools, cont'd.

World Nuclear University Summer Institute Oxford

Energy Innovation Hub – Modeling and Simulation for Nuclear Reactors

CASL: The Consortium for Advanced Simulation of Light Water Reactors Overview

Doug Kothe and Ronaldo Szilard Director and Deputy Director, CASL

> kothe@ornl.gov ronaldo.szilard@inl.gov

CASL mission: Develop and apply the VR to address 3 critical performance goals for nuclear power

Reduce capital and operating costs per unit energy by:

- Power uprates
- Lifetime extension

Reduce nuclear waste volume generated by enabling higher fuel burnups

Enhance nuclear safety by enabling high-fidelity predictive capability for component and system performance from beginning of life through failure

Generation-IV Challenges

High temperature Exotic materials Helium Liquid metals Supercritical water Supercritical CO₂ Minor actinides Major actinides High burnup cores nonproliferation

Higher temperature expands the range of applications

Meeti

Title TBD

DOE has a new R&D roadmap

NUCLEAR ENERGY RESEARCH AND DEVELOPMENT ROADMAP

REPORT TO CONGRESS

April 2010

Used nuclear fuel: options for US policy

- Once through cycle (throwaway)
- Modified open cycle (partial recycle)
- Full recycle (reprocessing and engineered waste forms)

Enabling solar system exploration

- Radioisotope power systems
- Nuclear rockets
- Intense scientific exploration
 - Mars Science Lab
 - Multi-kilowatt power requirements

The future of nuclear engineering?

- Applied science
- International alliances
- Large teams
- Increased reliance on high performance computing
- Energy systems integration
- And the engineers who actually produce the energy!