FSS

How I Raised My Inkom Inkom UPRR Bridges

Mike Slegers, PE

- 1 General Background
- **2** Goals and Challenges
- 3 Approach and Concepts Investigated
- 4 Design Details
- **5** Lessons Learned
- 6 Q&A

1 General Background

Project Team

- Idaho Transportation Department, District
 5 - Client
- HDR Prime consultant

Location

Location

2 Goals & Challenges

Project Need

Challenges

- Skew of railroad tracks
- Vertical clearance of tracks
- UPRR ROW
- Proximity of piers to railroad tracks
- Utilities
- MOT during construction

3 Approach & Concepts Investigated

Existing Bridge

- 6 spans
- Concrete piers and girders
- 55 deg skew to tracks
- Low vertical clearance

- OPTION A
 - 3-span bridge
 - high skew with conventional piers
 - PRO
 - Shortest bridge length
 - CON
 - most expensive (+5%)
 - large piers and large footprint in UPRR ROW

• OPTION B

- 3-span bridge
- moderate skew with conventional piers
- PRO
 - Moderate skew
- CON
 - also expensive (+5%)
 - Longest span (255ft)

OPTION C

- 3-span bridge
- Mild skew
- non-conventional piers
- PRO
 - Shorter main span
 - Smaller pier footprint
- CON
 - Specialized design
 - Longer overall length

- 3 span steel girder bridge
- 158-240-130 span configuration
- Integral, hammerhead-style piers

- 6.5-ft tall girders; 7.9-ft superstructure
- 23.7'+7.9'-18.9'-4.7' = 8ft GRADE RAISE

Typical Section

4 Design Details

Superstructure Model

• Typical assumption for a 3-span continuous beam

Design Process

Global Modeling

Spline model using beam elements

Drilled shaft fixity

Iterate on column/shaft interface lateral deflection

			Pier 1							
					NB		SB			
		Starting DS							Ending DS L	
Iteration #	Shaft Dia. (ft)	L(ft)	D	LARSA (in)	Lpile (in)	% diff	Lpile (in)	% diff	(ft)	Ending D
1	9.84	27.46	2.8	0.566	0.440	22%	0.426	25%	24.57	2.5D
2	9.84	24.57	2.5	0.508	0.603	-19%			27.11	2.8D
3	9.84	27.11	2.8	0.624	0.500	20%			25.82	2.6D
4	9.84	25.82	2.6	0.538	0.565	-5%			26.15	2.7D
5	9.84	25.60	2.6	0.483	0.412	15%			24.69	2.5D
6	9.84	24.69	2.5	0.457	0.472	-3%			24.90	2.5D
7	9.84	24.69	2.5	0.462	0.472	-2%			24.83	2.5D
8	9.84	24.69	2.5	0.468	0.479	-2%			24.84	2.5D
9	9.84	24.69	2.5	0.494	0.732	-48%			28.07	2.9D
10	9.84	28.07	2.9	0.630	0.559	11%			27.30	2.8D
11	9.84	27.30	2.8	0.567	0.473	17%			26.22	2.7D
12	9.84	25.98	2.6	0.548	0.565	-3%	0.556	-1%		

Iterations with the modeling

Column Section

- 8.5ft x 5.5ft
- f'c = 5000 psi
- Bundled #11's vertical steel
- Bundled #8 hoops
- 2 interlocking hoops
- 28ft tall

Column Section

Drilled Shaft Foundation

- Column frames into drilled shaft foundation
- ~111ft shaft length

Drilled Shaft Section

- 3.0m diameter (9.8ft)
- f'c = 4000 psi
- Grade 80
 reinforcement
- Upper Section
 - 20 Triple Bundles
 - 12 Double Bundles
 - #14's vertical
 - Bundled #8 hoops

Drilled Shaft Section

- Lower Section
 - 20 Double Bundles
 - 12 Single bars
 - #14's vertical
 - Single #8 hoops

Integral Pier Cap

FLEWATION

Integral Pier Cap

Integral Pier Cap Details

- f'c = 6000 psi
- 17 High strength post tensioning bars
 - fpu = 150ksi
 - 2 1/2" diameter
- Bar jacking force of 542 kips, or 542,000 lbs
- #8 transverse bars for shear and torsion resistance

Construction Sequence

- 1. Foundation
- 2. Columns
- 3. Erect falsework supports

- 4. Place girders on temp supports
- 5. Construct pier cap

Challenges Revisited

How were they addressed?

Skew of railroad tracks	Reduced skew by using single column piers
Vertical clearance of tracks	Integral caps; Raise I-15 grade ~8ft; limit superstructure depth
UPRR ROW	Abut 1 and Pier 1 located in ROW; Pier 2 located outside of ROW
Proximity of piers to railroad tracks	Locate piers >27ft from future siding tracks; no crash walls
Utilities	Bury overheads
MOT during construction	Crossovers on I-15; temporary closures on Old 91

05 Lessons Learned

- Check with specialty contractors on specialty design items – they can provide excellent feedback.
- Seek guidance from other governing agencies when client doesn't have experience/guidance.
- Large member sizes = large equipment; be aware of space

Q & A

